Identification and Counting of Sugarcane Seedlings in the Field Using Improved Faster R-CNN
نویسندگان
چکیده
Sugarcane seedling emergence is important for sugar production. Manual counting time-consuming and hardly practicable large-scale field planting. Unmanned aerial vehicles (UAVs) with fast acquisition speed wide coverage are becoming increasingly popular in precision agriculture. We provide a method based on improved Faster RCNN automatically detecting sugarcane seedlings using photography. The Sugarcane-Detector (SGN-D) uses ResNet 50 feature extraction to produce high-resolution expressions provides an attention (SN-block) focus the network learning channels. FPN aggregates multi-level features tackle multi-scale problems, while optimizing anchor boxes size quantity. To evaluate efficacy viability of proposed technology, 238 images were taken from air unmanned vehicle. Outcoming average accuracy 93.67%, our outperforms other commonly used detection models, including original R-CNN, SSD, YOLO. In order eliminate error caused by repeated counting, we further propose de-duplication algorithm. highest reached 96.83%, whilst mean absolute (MAE) 4.6 when intersection union (IoU) was 0.15. addition, software system developed automatic identification cane seedlings. This work can accurate data, thus support farmers making proper cultivation management decision.
منابع مشابه
Object Detection in Video using Faster R-CNN
Convolutional neural networks (CNN) currently dominate the computer vision landscape. Recently, a CNN based model, Faster R-CNN [1], achieved stateof-the-art performance at object detection on the PASCAL VOC 2007 and 2012 datasets. It combines region proposal generation with object detection on a single frame in less than 200ms. We apply the Faster R-CNN model to video clips from the ImageNet 2...
متن کاملSymbol detection in online handwritten graphics using Faster R-CNN
Symbol detection techniques in online handwritten graphics (e.g. diagrams and mathematical expressions) consist of methods specifically designed for a single graphic type. In this work, we evaluate the Faster R-CNN object detection algorithm as a general method for detection of symbols in handwritten graphics. We evaluate different configurations of the Faster R-CNN method, and point out issues...
متن کاملMammography Lesion Detection Using Faster R-cnn Detector
Recently availability of large scale mammography databases enable researchers to evaluates advanced tumor detections applying deep convolution networks (DCN) to mammography images which is one of the common used imaging modalities for early breast cancer. With the recent advance of deep learning, the performance of tumor detection has been developed by a great extent, especially using R-CNNs or...
متن کاملContextual Priming and Feedback for Faster R-CNN
The field of object detection has seen dramatic performance improvements in the last few years. Most of these gains are attributed to bottom-up, feedforward ConvNet frameworks. However, in case of humans, top-down information, context and feedback play an important role in doing object detection. This paper investigates how we can incorporate top-down information and feedback in the state-of-th...
متن کاملthe analysis of the role of the speech acts theory in translating and dubbing hollywood films
از محوری ترین اثراتی که یک فیلم سینمایی ایجاد می کند دیالوگ هایی است که هنرپیش گان فیلم میگویند. به زعم یک فیلم ساز, یک شیوه متأثر نمودن مخاطب از اثر منظوره نیروی گفتارهای گوینده, مثل نیروی عاطفی, ترس آور, غم انگیز, هیجان انگیز و غیره, است. این مطالعه به بررسی این مسأله مبادرت کرده است که آیا نیروی فراگفتاری هنرپیش گان به مثابه ی اعمال گفتاری در پنج فیلم هالیوودی در نسخه های دوبله شده باز تولید...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Remote Sensing
سال: 2022
ISSN: ['2315-4632', '2315-4675']
DOI: https://doi.org/10.3390/rs14225846